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Abstract

Standard procedures for drawing inferences from complex

samples do not apply when the variables of interest z are not

observed directly, but must be inferred from secondary random

variables x that depend on z stochastically. Employing Rubin's

(1977) approach to missing data in survey research, we present a

procedure by which reasonable inferences can be made in such

situations. The-key is to represent knowledge about latent

variables in the form of a predictive distribution, conditional on

manifest variables. It is then possible to obtain the expectations

of statistics that would have been computed if the values of the

latent variables corresponding to sampled units were known, along

with variance estimators that account for uncertainty due to both

subject sampling and the latency of z.

Key words: EM algorithm
Incomplete data
Latent structure
Multiple imputation procedures
Sampling designs
Superpopulation models
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Inferences about Latent Populations from Complex Samples*

Introduction

While progress has been made in recent years in estimating

latent distributions (e.g., Andersen & Madsen, 1977; Dempster,

Laird, & Rubin, 1977; Laird, 1978; Mislevy, 1984, 1985; Sanathanan &

Blumenthal, 1978), currently available procedures remain limited to

simple random samples and are inaccessible to the typical secondary

user of survey data.' This paper addresses the problem of

estimating distributions under conditions that (1) data have been

gathered from a finite population under a complex sampling design

and (2) one or more variables of interest are not observed directly,

but must be inferred from responses which depend upon them

stochastically (e.g., "ability" variables under an item response

model).

Two basic approaches exist for handling uncertainty due to

sampling in a finite population (see Cassel, Sirndal, & Wtetman,

1977, for an overview). Unde. the "fixed population" or

"randomization" approach, the only source of variation is

researcher's random selection of a sample in accordance with

probabilities under a given sampling design. Inferences are based

on the distribution of an estimator over the samples that can occur

under that design. Under the "superpopulation" approach, the finite

*The author would like to thank R. Darrell Bock for calling his
attention to the applicability of multiple imputation procedures to
the assessment setting, and Henry Braun, Ben King, Paul Rosenbaum,
and Don Rubin for comments on earlier drafts of this presentation.
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population itself is considered a sample from a hypothetical

superpopulation. A structure is assumed for the superpopulation,

its parameters are estimated from the sampled units, and inferences

are drawn with respect to remaining uncertainty about nonsampled

units.

Extension to the latent variable case is possible under both

approaches. Attention is restricted here to the randomization

approach, although it must be admitted that the unifieu treatment of

uncertainty from all sources in a Bayesian superpopulation solution

(e.g., Mislevy, 1985) is more satisfying. Given the overwhelming

predominance of the randomization approach in applied work, however,

there is clearly a place for a solution within its framework.

The key idea is to represent knowledge about latent variables

in the form of a predictive distribution, conditional on manifest

variables, in the manner suggested by Rubin (1977) as a way of

handling missing responses in survey data. In a manner also

suggested by Rubin (1978), this predictive distribution can be

approximated numerically by repeated random draws. Standard

complete-data procedures may then be employed to obtain the

expected value of any statistic that uld have been computed, had

values of the latent variables been available. An accompanying

variance estimator takes into account uncertainty due to both

subject sampling and to the latency of the variables of interest.

7
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Preliminaries

Consider a population 1/' N identifiable units, indexed by i.

Each is characterized by a pair of real-valued vectors (Zi,Yi);

values of z are unknown for all units before observations are taken,

although values of some components of Y may be known for all units

(e.g., stratification variables). Z and Y will refer to the

population matrices of these values. Interest lies in a function

S S(Z,Y) of the population values, but data will be obtained from

only a sample of units. A sample design assigns probabilities p(d)

of selection to members d of", the set of the 2
N

possible subsets

from s67, and may effect complexities such as stratification and

clustering. Let D be the random variable indicating the units

selected in the sample. Correspondingly, (zroyD) Is a random

variable and (z
d
,y ) a generic value, representing values of z and
d

y from np (or nd) designated sample units. We shall restrict our

attention to noninformative sample designs, or those for which

Pr(D d) does not depend on unknown values of Z or Y; i.e.,

letting y
(1) represent the prior known components of y

d'
we have

Pr(D dlz
d
,y
d

) Pr(D dly (1)
).

. .d

Assumption 1: The estimator sci s(zwyD) could be used to estimate

S if (z
D
,y
D
) were observed. We assume s to be unbiased--i.e.,

EA(sr, - S) 0--with variance V Var _.(sD - S) estimated by V

V(zD,yD). A normal approximation is often employed in practice:
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(sp - S) N(0,V)

Suppose that observations from sampled unit i consist not of

(zi,yi), but rather of (xi,yi), where xi is a possibly

multidimensional secondary random variable that depends

stochastically upon zi. An example would be the observation of

right and wrong answers to test questions, assumed to depend upon

a latent ability parameter in an item response model. We shall

refer to unobserved variables z in the sequel as the latent

variables, the observed variables y as collateral variables, and

the observed variables x as item responses.

Assumption 2: Item responses x are governed by a model of knowr

parametric form, characterized by possibly unknown parameters SI.

We assume conditional independence with respect to collateral

variables and independence over units:

gxizor03 ) gxlz;$ )

- R gxilzioy .i
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The General Solution

This section provides a general solution for estimating

functions of variables in fixed populations, when observations are

obtained from only a sample of units and values of one or more

variables of interest are not directly observed. The solution

proceeds in two stages. The first stage approximates conditional

or predictive distributions of the latent variables corresponding

to sample units; that is,

P(NIN'Yd)

The second stage obtains marginal distributions of statistics that

would have been computed, had values of latent variables been

available, conditional on observed values. Of particular interest

as an estimator of S is the conditional expectation of s given

x
d

and y
d

:

0
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53 s*(!d,Td)

E (8(z" Aord)Ixdad)

= I s(z
d
,y
d
) p(z

d
Ix
d*
y ) dz..d

First, however, an additional assumption is required to

compute the conditional distribution p(zlx,y):

Assumption 3: The distribution of latent variables given

collateral variables, or p(zly;$
2 '
) follows a known form, with

possibly unknown parameters 82. Furthermore, independence is

assumed over units:

p(zIY;02) n p(zilyi;02) .

i

This assumption resembles those used in superpopulation models

for sampling from finite populations (e.g., Ericson, 1969; Royall,

1970).
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Stage 1: Estimating Conditional Distributions

The task of stage 1 is to apprcalmate the conditional density

P(zdl xd,yd). Dropping the subscripts d on x and y, and denoting

(61,62) by 0, we note first that

where

P(z1x,Y) I P(zlx,Y;0) P(Olx,Y) dO

f p(xlz,y0) p(z IYal) P1(x1Y0) P(Olz,Y) dO

[Bayes theorem]

m f n p(xilzol) p(z1y012) p1(!1!;12) p(sl!,!) ds ,

(1)

[Assumptions 7 and 3]

P(x13,0) I n P(x4lz;01) P(zIY1 02) dz
i

Now by Bayes Theorem,

P(Olx,y) p(xly:0) p(Oly) p-1(xly)
IN IN .11 PO IN OP 00 OP 00 AP

12
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p(x,y) II p(xlz,y0) p(ziyai`
1.11. OP SO If 411 RI

P(01Y) dz dB ;

this latter quantity does not depend on B, so we can write simply

Pq13.5,9 K I II p(milz;f31) P(ziYi;132) dz P(f3.1Z)

' K P(x1Y00 P(3 1y) . (2)

Substituting (2) into (1) and noting that p(01Y) E p(B) by the

noninformativity of the sampling design, we obtain

P(!l!,!) -1(Inp(xilz;01) P(z1Y032) p(0) da . (3)

stage 2: Estimating Marginal Distributions

The task of stage 2 is to obtain the expected value of

s(z,y) given the observed data (x,y) and p(z1x,y) from stage 1.

fine

Iv Iv NO NO

13
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- E[s(zd,yd)blend

I s(zd,yd) ) P(z
d
lx

d'
y
d
) dz

d
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(4)

In words, s: is the average of s(zd,yd) over all possible values

of z
d

for the sample, with each value weighted by its relative

likelihood given the observations. To the extent that s is a

reasonable estimator of S, then, so is s* in the latent vtriable

case, since s* is the best quadraticloss estimator of sd given

xd and rd.

Tae magnitude of the uncertainty in s* may be approximated

along the line followed by Hertzog and Rubin k1983). There are two

sources of variation in s*. First there is variation due to

sampling. By Assumption 1,
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Secondly, there is variation due to the latency of z even after the

data x
d

have been observed. For any given sample d, we define

W
d

E
z

(s*
d

-
d

)

2

.d

- I s(zd'Yd))2 P(!dl!dqd) (IN

A

Herzog and Rubin define the "compromise" estimator U of total

variance as

A A A

U Wd + Vd

In the context of the analysis of nonresponse, Hertzog and Rubin

demonstrate good approximation of at N(S,U) to nominal probability

levels under a linear population model and an ignorable model for

the nonresponse process.

A

Closed-form evaluation of s* and U will not be possible except

in unusual cases. A numerical approximation with attractive

properties for applied work is Monte Carlo integration:

15
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is a value selected at random from F(z1 x,y). The sampling process

is carried out R times to yield R replicate pseudo-data sets of

the form (z,y). The estimator s is evaluated with each replicate
r

data set in turn, and the results are averaged to provide an

estimate of s(z,y) and therefore of S(Z,Y).

Production of the replicate pseudo-data sets can be carried out

in two steps. First a value 0: is selected at random from p(0).

Second, because the unit distributions p(zIxi,yi;0) are independent

conditional on 0, a value zir can be selected at random from

p(zlx ,y 0 0*) for each unit in the sample separately.

When 0 is well-determined by xd and yd, the generation of

pseudo-data sets with 0* E 0, the maximum likelihood estimate of
"r

0 proves quite adequate.

16
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By similar reasoning,

A A A

U M Wd + Vd

1 "
R

1
E [s(z*r ,y) s*(x,y)]

2 + R E V[s(z,r y)] . (5)
.

r r

Again in words, one approximates the variance of s* by the

average of V(s) values for s calculated on the R pseudodata sets,

increased by the variance of the pseudo estimates of s. When V(s)

is given by a resampling scheme such jackknifing or balanced half

replication, a less costly approximation for the sampling variance

of s is V(s(z*,y)) as computed from one randomly selected pseudodata

set. These procedures will be recognized as a variation of "multiple

imputation" procedures for missing data (Hertzog & Rubin, 1983;

Rubin, 1977, 1978), with latent variables considered 100percent

missing--that is, values are not observed from any respondent.

An important practical advantage of the multipleimputation

approach is that the same collection of pseudodata sets can be

used to estimate several different statistics S. A file containing

R replicatee would thus allow the secondary user to estimate without

additional special programming, any statistic he or she would have
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liked to calculate had z been observable, along with an indication

of its precision that takes the latency of z into account.

A Numerical Exam)le

This section applies the procedures outlined above to a small

example with data from the Profile of American Youth (U.S.

Department of Defense, 1982). For each respondent, the data consist

of two demographic variables y (ethnicity and sex) and four

responses x to items on an aptitude test, assumed to be governed by

e single latent aptitude variable z. The item response model and

conditional estimation results are taken from Mislevy (1985); the

interested reader is referred to this source for additional detail.

A simplified sampling design (though still more complex than simple

random sampling) is assumed here for purposes of illustration.

The Data

The data we consider were obtained as part of the Profile

of American Youth, a survey of the aptitudes of a national

probability sample of Americans aged 16 through 23 in July, 1980,

Table 1 presents counts of the sixteen possible response patterns

to four items from the Arithmetic Reasoning subtest of the Armed

cervices Vocational Aptitude Batter, (ASVAB), Form 8A, from

samples of white males and females and Black males and females.

A 1 denotes a correct response, while a 0 denotes an incorrect

response. Though multiple atrges of sampling were employed in

18
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the actual design of the study, we shall treat these four groups

as a stratified random sample from a target population, with

Blacks sampled at a rate'of double that of whites.

Insert Table 1 about here

The Item Response Model

Let x
ij

represent the response of person i to item j. It is

assumed that responses are governed by the three-parameter logistic

item response model (Birnbaum, 1968), which gives the probability

of a correct response as

P(xij 1 Izi;arbry Pij

cj + (1 - cj)/{1 + ex0-1.7sj(zi - bj)])

and the probability of an incorrect response as

P(xij 0 I zi;arbj,cj) 1 - Pij ,

where aj, bj, and cj are parameters that characterize the

regression of a correct response to item j on z. These parameters,
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over all four items, are denoted by 0
1
in the general solution

given above. Under the usual assumption of conditional

independence, the probability of a vector of item responses xi

from person i is given by

1-x
ij

P(x lz al
1
) HPi;

j
(1 Pij)

4'

Estimates of the item parameters, based on responses from an

independent sample of 1178 persons and computed with the BILOG

computer program (Mislevy & Bock, 1982), appear as Table 2.

Insert Table 2 about here

Conditional Distributions

Conditional multivariate normality under a saturated

homoscedastic model is assumed so that

'P(zlYinf,a) (2x0)-1/2 exp[ -(z - y ti)2/202]

where ti = (tivti2,ti3,ti4) is a design vector associated with

respondent i, taking values as follows:

t
11

= 1

17
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.5 if white
tit = {

-.5 if Black

.5 if male

ti3 =
-.5 if female

.25 if white male or Black female
t
14

=
-.25 if Black male or white female;

and where y = (y1,y2,y3,y4) represents a constant term, an

ethnicity effect, a sex effect, and an ethnicity-by-sex

interaction. The common within cel- standard deviation is denoted

a. Together, y and a play the role of 02.

Under these assumptions, the conditional likelihood of the

data in Table 1 is given by

L n (xilyiO3)i

n I p(milz01) p(zlyi ;y,a) dz
i z

Equating first derivatives of log L to zero yields likelihood

equations. For y, after simplification,
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Y (T'T) T'u (6)

A A

where T ( and u = (u
'
u
n
) with

.n

For

^

pi = I z p(zIx y .0 y a) dz (7)

"2 -1 " 2
a n E I (z - u

i
) p(zIx ,y

i'
.0

1
,y,a) dz (8)

i

It will be noted that y and a appear in the right-hand sides of (7)

and (8), necessitating iterative solution. An EM solution proceeds

in repeated cycles of the form

E-step: For provisional estimates y
(t)

and a
(t)

,

AO

approximate the conditional density by

" "
P(zIxi,Yi;01,I

(t)
,n

(t)
)

M-step: Taking this approximation as known, evalute (6)-(8)

"
to obtain improved estimates y

(t+1)
a
(t+1)

and

22
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With 01 taken as known, the only unknowns are y and a, parameters

of a distribution in the exponential family; convergence of the

EM algorithm is thereby guaranteed (Dempster, Laird, & Rubin, 1971).

Resulting estimates are

and

A

= ( - -.13, .92, .13, .43)

= .82 ;

implied cell means are

White males .51

White females .15

Black males -.63

Black females -.55

Generation of Pseudo Data

Let U ...0
40

be a grid of points from -4.875 to 4.875 in

equally-spaced steps of .25. The continuous distributions given by

p(zIxi,yi;13) for each respondent in the sample may be approximated

by discrete distributions over a finite number of points--i.e.,

histograms--as follows:
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p(U
q
lx ,y 03)

A

P(U
q
lx y ;0 ) A

E P(UrIxi,yin2)

Five pseudo-data sets were generated by taking five values at

random from such a histogram for each respondent in a two-step

procedure. In the first step of obtaining rile a random number

t
ir

from the unit interval was generated to target a block in the

histogram, namely thct block kir such that

k
ir

-1 k
ir

q 1
E p(u

q
Ix or ;0) < tir

q

< E

1

p(u
q
Ix
i
,y 03) .

ia*
In the second step, a second random number s from the unit interval

was generated to specify a point in block kir:

zir U + .25(s - .5)
k
ir

Table 3 gives likelihoods, a conditional distribution, a predictive

distribution, and pseudo values for a typical respondent.

Insert Table 3 about here
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Estimation of Marginal Distributions

As noted above, it is desired to estimate the overall mean of

the population under the assumption that sampling was random within

the strata defined by the cells of the demographic design, with

sampling probabilities doubled for Blacks. If values of z had been

observed rather thar x, the estimate of the mean would have been

- z11 212 221 222

3 3 6 6

where subscripts identify cells as follows:

11 = white males,

12 = white females,

21 = Black males, and

22 = Black females.

Ignoring finite population corrections, an estimate of the

variance of this estimator is given by

2 2 2 2

all
s
12

s
21

s
22

Var(z)
9n12 36n21

36n
22

where n
jk

is the sample size in cell jk and 's
jk

is the estimated

standard deviation.

(9)
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Table 4 gives cell means and standard deviations as estimated

from the five pseudodata sets. The expectation of the sample

mean z, given observed data, is the average of the five pseudo

sample means, or .0407. The variance associated with this estimate

is given by averaging values of (9) over pseudodata sets, or

.0009, plus the variance among the estimates z* or .0008 to

yield a final value of .0017.

Insert Table 4 about here

Discussion

A necessary requirement for consistent estimates under the

approach outlined above is the correct specification of p(zly).

When the dimensionalities of z and y are low (e.g., five latent

variables and five collateral variables), it is possible to obtain

a detailed nonparametric approximation of this conditional

distribution (Mislevy, 1984). When dimensionalities of z and

y run into the hundreds, however, as in a largescale general

purpose survey such as the National Assessment of Educational

Progress (NAEP), simplifications and computing approximations

cannot be avoided. This section, therefore, suggests some computing

approximations and discusses their effects on the estimation of

statistics such as differences in subpopulation means.

26
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A

Point estimation of S. The integration over B required in (1)

to obtain p(z1x,y) can be avoided in large samples when p(01x,y) is

well-determined from the data. In such cases the imprecision

associated with an individual's value of z that can be attributed

to variation in p(01x,y) is negligible, and one may sample values
ow ow wo

A A

from the more tractible distribution p(zlx,y0), where B represents
WO r r

the maximum likelihood or Bayes modal estimate estimate of B.
OW

Solutions can be obtained by means of a generalized EM

algorithm (Dempster, Laird, 6 Rubin, 1977). Bock and Aitkin (1981)

give procedures for solving (6) when 0
2
is known, and Mislevy

(1985) gives proAures for solving (7) when 01 is known and

p(zlyi;02) is MVN(tir,t), with ti a vector function of yi expressing

the dependence ' the conditonal mean upon the effects r of

collateral variables. These presentations are readily combined to

give a joint solution for 01 and 02. Such an integrated solution

for the special case p(zlyi) iid N(11,0 may be found in Rigdon

and Tsutakawa (1983).

Multivariate normal conditions' 'distributions. In principle,

p(zly) gives the distribution of the latent variables at all

possible values of y. As the dimensionality of z increases,

considerations of tractability make it increasingly attractive to

model these conditional distributions as multivariate normal (MVN)
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with a 'in dispersion matrix. It must be emphasized that this is

not the same as assuming MVN marginal distributions among the latent

variables z. Indeed, as the number of collateral variables

increases, and to the degree they are correlated with z, the

estim4-:.ed marginal distribution of a can become arbitrarily close to

a true (smooth) distribution of any form.

Omission of selected interactions. Even under the assumption

of conditional multivariate normality, increasing dimensionality of

y rapidly overburdens available computing resources if all main

ef'ects and interactions of all orders are modeled in p(sly). A

reasonable expedient is to omit all higher level interactions

(interactions of order three or higher are rare in behavioral

research) and, if necessary, many second order interactions as well.

If main effects only are modeled, analyses of pseudo-data sets will

capture them correctly but may be in error as to interaction effects.

The degree of error is reduced to an extent depending on two factors:

1. T.t will be recalled that for each respondent, stage 2

combines information from the estimated conditional

distribution po(zly), with information from item responses

via p(xlz) in order to obtain the predictive distribution
M

p(zix,y) from which random values are selected. Assuming

p(xlz) is correctly specified, one could use the resulting
WI

28
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pseudo-data set to obtain the empirical distribution p'(zly).

If r
0
(zly) has been correctly specified, p

0
(zly) and p'(*IY)

will agree. If p0(zly) has not been correctly specified,

information from x will cause p'(sly) to differ from

po(zly) value in the direction of the true distribution, by

an amount equal to that achieved in one EM cycle of

estimation. An approximation of this amount can be obtained

by applying the proceOlres outlined by Dempster et al.

(1977, pp. 10-11) to the model that includes the omitted

terms.

2. Attenuation of estimates of omitted interactions will also

be ameliorated to the extent that such effects are

e-rrelated with effects that are not omitted. This

follows from results on the consequences of specification

errors in linear regression models. If data are generated

in accordance with parameter estimates under a model that is

misspecified by the omission of certain effects, subsequent

analyses of these data with the correct model will yield

improved estimates of all effects raless the omitted effects

are uncorrelated with those not omitted.

Omission of selected collateral variables. It may be

-reasonable to omit nonessential variables from the conditional
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estimation when the total number of collateral variables is large.

Statistics s* based on included variables only will not suffer from

this omission; subgroup differences, for example, will be captured

100percent if these effects were included in the coclitioning.

For the reasons cited above, the attenuation of statistics based on

omitted variables will not be serious when each respondent provides

several item responses and as the number of included collateral

variables increases; subgroup differences on omitted variables, for

example, will suffer negligible attenuation if included variables

are chosen carefully.

Use of reduced variables. The careful choice of variables to

include in the conditional estimation includes two considerations.

First, effects deemed important in their own right should be

explicitly modeled if possible so that statistics based on their

joint distributions will suffer no attenuation at all. Examples

might include key demographic effects, treatment effects, and

salient interactions. Second, rather than simply omitting

remaining variables it is preferrable to include a few wellchosen

linear combinations of remaining variables; e.g., the first four

principle components, or factor scores based on the first three

principle factors. Such use of reduced variables guarantees

efficteui. vse of the limited number of effects that can be modeled

in recapturing to a great extent a wide range of potential

statistics s*.
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Footnote

'But see Spencer (1984) on bootstrapping the aforementioned

procedures.
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Counts of Observed Response Patterns

Item
Response

1 2 3 4

White
Males

White
Females

Black

Males

Black
Females

0 0 0 0 23 20 27 29

0 0 0 1 5 8 5 8

0 0 1 0 12 14 15 7

0 0 1 1 2 2 3 3

0 1 0 0 16 20 16 14

0 1 0 1 3 5 5 5

0 1 1 0 6 11 4 6

0 1 1 1 1 7 3 0

1 0 0 0 22 23 15 14

1 0 0 1 6 8 10 10

1 0 1 0 7 9 8 11

1 0 1 1 19 6 1 2

1 1 0 0 21 18 7 19

1 1 0 1 11 15 9 5

1 1 1 0 23 20 10 8

1 1 1 '1 86 42 2 4

TOTAL 263 228 140 145
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Table 2

Item Parameters

Item a

1 1.27 -.13 .20

2 1.45 .42 .20

3 2.49 .71 .20

4 2.27 .62 .20
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Table 3

Likelihood, Conditional Density, and Prediction Lelyity

for a Typical Respondent

Collateral variables y: Black, female Item responses x al 1100

U
k

p(xIUk) p(UkIy) P(Ukka)

-4.875 .026 .000 .000

-4.625 .026 .000 .000

-4.375 .026 .000 .000

-4.125 .026 .000 .000

-3.875 .026 .000 .000

-3.625 .026 .000 .000

-3.375 .026 .000 .000

-3.125 .026 .001 .000

-2.875 .026 .002 .001

-2.625 .026 .005 .002

-2.375 .027 .010 .003

-2.125 .027 .029 .006

-1.875 .028 .032 .011

-1.625 .030 .050 .018

-1.375 .034 .071 .028

-1.125 .039 .092 .043

-0.875 .049 .110 .065

-0.625 .066 .120 .095

-0.375 .092 .121 .134

-0.125 .130 .113 .176

0.125 .168 .097 .194

0.375 .171 .073 .149

0.625 .113 .045 .061

0.875 .042 .022 .012
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1.125 .010 .010 .001

1.375 .002 .005 .000

1.625 .000 .002 .000

1.875 .000 .001 .000

2.125 .000 .000 .000.

2.375 .000 .000 .000

2.625 .000 .000 .000

2.875 .000 .000 .000

3.125 .000 .000 .000

3.375 .000 .006 .000

3.625 .000 .000 .000

3.875 .000 .000 .000

4.125 .000 .000 .000

4.375 .000 .000 .000

4.625 .000 .000 .000

4.875 .000 .000 .000

Mean and standard deviation of P(Ukix,y): -.223, .614

Five randomly selected points: .058, .333, -.352, .009, .176
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Estimated Population and Subpopulation Means

36

Pseudo-Data Set

1 2 3 4 5

Subpopulation Mean Var. Mean Var. Mean Var. Mean Var. Mean Var.

White males .4840 .6928 .5276 .8158 .5461 .7547 .5403 .7359 .4964 .6825

White females .0804 .7570 .2087 .6814 .1964 .6170 .2078 .6973 .1351 .7056

Black males -.6161 .6054 -.6357 .6527 -.5792 .6156 -.5758 .6935 -.6178 .5573

Black females -.5509 .5510 -.5866 .5898 -.4833 .6139 -.4911 .5220 -.4878 .6269

Population

mean (i) -.0064 .0417 .0704 .0716 .0262

Var (;) .0009 .0009 .0008 .0009 .0009
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